PERGAMON

Neural Networks 14 (2001) 1201-1218

Neural
Networks

www.elsevier.com/locate/neunet

Contributed article

A closed-form neural network for discriminatory feature
extraction from high-dimensional data

Ashit Talukder?, David Casasent”™

“Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109, USA
hDepartment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

We consider a new neural network for data discrimination in pattern recognition applications. We refer to this as a maximum discriminat-
ing feature (MDF) neural network. Its weights are obtained in closed-form, thereby overcoming problems associated with other nonlinear
neural networks. It uses neuron activation functions that are dynamically chosen based on the application. It is theoretically shown to provide
nonlinear transforms of the input data that are more general than those provided by other nonlinear multilayer perceptron neural network and
support-vector machine techniques for cases involving high-dimensional (image) inputs where training data are limited and the classes are
not linearly separable. We experimentally verify this on synthetic examples. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we consider a new nonlinear neural
network-based feature extraction procedure for pattern
recognition applications. It is referred to as the maximum
discriminating feature (MDF) neural network, since
it is capable of extracting features that are useful for
discrimination.

The Fisher linear discriminant (Fisher, 1950) is a linear
transformation that is well suited for separating image/
signal data for different objects or classes. It yields fewer
discriminant feature vectors than the number of classes, i.e.
only ¢ — 1 feature vectors when c classes are present. This is
restrictive in many pattern recognition problems where
more than ¢ features are necessary. The Fisher linear discri-
minant and its variations such as the orthonormal discrimi-
nant vector (ODV) (Foley & Sammon, 1975; Hamamoto,
Kanaoka & Tomita, 1993) consider the squared separation
between the means of each class and, hence, cannot perform
well on data with multiple clusters per class. Our MDF
neural network feature extraction approach uses a new
discrimination measure that handles data with multiple
clusters per class.

The main advantage of linear transforms is that they are
easy to design and typically have closed-form solutions.
However, linear transforms typically extract information
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from only the second-order correlations in the data
(covariance matrix) and ignore higher-order correlations
in the data. It has been shown that many signals in the
real world are inherently non-symmetric (Barlow, 1961;
Softky & Kammen, 1991) and, therefore, contain higher-
order correlation information that could be useful; linear
principal component analysis (PCA) is incapable of repre-
senting such data (Softky & Kammen, 1991). For such
cases, nonlinear transforms are necessary. A number of
nonlinear transformation methods for pattern recognition
exist (Cortes & Vapnik, 1995; Karhunen & Joutsensalo,
1994; Kramer, 1991; Lippmann, 1987; Scholkopf, Smola
& Muller, 1998). Neural networks are among the most
commonly used nonlinear techniques, since they provide
very general transforms (Lippmann, 1987). It has been
proven that artificial neural networks can approximate
posterior class probabilities (Ruck, Rogers, Kabrisky,
Oxley & Suter, 1990) and are, therefore, useful for class
discrimination (classification). It has been shown (Bishop,
1995) that neural networks with threshold activation func-
tions can produce arbitrary piecewise linear decision
surfaces; the number of hidden layer neurons required
increases significantly with the complexity of the decision
surface, which results in larger training set requirements
(Baum & Haussler, 1989). Other neural networks inherently
produce piecewise-hyperquadratic (Telfer & Casasent,
1993) surfaces, and general piecewise quadratic (Casasent
& Natarajan, 1995) boundaries and, hence, require fewer
hidden-layer neurons to produce piecewise closed regions.

0893-6080/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0893-6080(01)00103-4



1202 A. Talukder, D. Casasent / Neural Networks 14 (2001) 1201-1218

Neural networks typically have a number of ad hoc
parameters (Casasent, Neiberg & Sipe, 1998), such as selec-
tion of the number of hidden layers, the number of hidden-
layer neurons, parameters associated with the learning or
optimization technique used, and in many cases require a
validation set for the stopping criterion. In addition, the
weights in a neural network are trained iteratively and this
produces problems with convergence to local minima. Our
nonlinear MDF neural network weights are obtained in
closed-form and, thus, do not have problems associated
with iterative neural network solutions.

A number of neural networks, termed nonlinear PCA
neural networks (Baldi & Hornik, 1989; Karhunen &
Joutsensalo, 1994, 1995; Kramer, 1991) attempt to perform
dimensionality reduction of the input data either using
nonlinear transforms or by considering higher-order corre-
lations in the input data. These prior iterative nonlinear PCA
neural network techniques to select weights are noted to
have convergence problems (Karhunen & Joutsensalo,
1995), in contrast to our linear and nonlinear MDF
algorithms that have closed-form solutions. We discuss
nonlinear PCA neural networks in more detail and discuss
the types of nonlinear transforms they can produce in
Section 4.

We now discuss prior work on nonlinear transformation
procedures applied to high-dimensional (image) input data,
including kernel-based methods (Cortes & Vapnik, 1995;
Scholkopf et al.,, 1998). All of these methods consider
higher-order cross-terms in the input data to produce
nonlinear transforms of the input data. This approach of
augmenting input data with cross-product terms to solve
pattern recognition problems has been noted elsewhere
(Cover, 1965; Duda & Hart, 1973, pp. 135-137; Gheen,
1994). The concept of nonlinearly transforming each input
pattern has been noted to theoretically yield better class
separability (Cover, 1965). However, due to the “curse of
dimensionality”, it has been noted that such solutions are
typically not easy to obtain due to the presence of limited
training data. Recently a nonlinear feature extraction kernel
PCA procedure with a closed-form solution has been formu-
lated (Scholkopf et al., 1998). However, kernel PCA is
designed merely for data representation, not for discrimina-
tion; our MDF algorithm is useful for data discrimination.
Volterra filters (Gheen, 1994) require iterative solutions; our
solution is a closed-form one. Another nonlinear classifica-
tion technique, the support vector machine (SVM) (Boser,
Guyon & Vapnik, 1992; Cortes & Vapnik, 1995) uses only a
few training set samples referred to as support vectors, those
that lie close to samples in another class. The polynomial
SVM technique has associated problems in terms of the
generality of the transformations produced and the number
of on-line computations (as detailed in Section 4).

Our MDF neural network uses new dimensionality reduc-
tion techniques for classification of high-dimensional input
data in the presence of small training sets. Its weights are
obtained in closed-form, and its activation functions are

dynamically chosen, thereby increasing the types of
nonlinear transforms it can produce. Our emphasis in this
paper is on applications involving high-dimensional input
data where sufficient training data are unavailable. We
compare the performance of different pattern recognition
techniques on such high-dimensional data, both theoreti-
cally and through experiments. The experimental data that
we use are synthetically generated with well-known
probability distributions (and, therefore, with well known
decision surfaces), rather than images with unknown distri-
butions; this allows us to compare the decision surfaces
obtained with the different pattern recognition methods
with that of the ideal decision surface.

In Section 2, we detail our nonlinear MDF neural network
technique. Our new solution for high-dimensional input data
(Section 3) is then derived. High-dimensional input data
correspond to cases where the total number of training
samples S is less than the dimensionality N of the input,
S < N. For image input data, N is the number of pixels
and typically, § < N. We also discuss the types of nonlinear
transformations (decision boundaries) obtained for high-
dimensional inputs by our nonlinear MDFs in Section 3.
We theoretically compare these results with those for
other nonlinear transformation methods on high-
dimensional input data only, including kernel-based
approaches such as kernel PCA, SVMs, and nonlinear
PCA neural networks for dimensionality reduction in
Section 4. The on-line computation load for the different
methods are also noted. We also show in Section 4 that
our MDF algorithm allows transforms of any polynomial
order and that the order of the transform and the parameters
in the MDF algorithm are automatically selected. This is not
the case with polynomial kernel-based methods such as
PCA and SVMs. Our theoretical analysis of the nonlinear
transformations produced by nonlinear kernel-based meth-
ods and nonlinear PCA neural networks is unique and, to
our knowledge, has not been discussed in any prior work.
Our theoretical analyses are verified through experiments on
synthetic data in Section 5.

We first discuss some of the terminology we use for
nonlinear transformations. The parameters we use to
describe a given nonlinear transform are its rank, principal
orientation, and degree. The number of dimensions in which
a nonlinear transform curves in the input space is referred to
as the rank of the transform. This is an extension of the well-
known concept of the rank of quadratic transforms (Weber
& Casasent, 1998). Note that when closed decision surfaces
are necessary in an N-dimension input space, the rank of the
nonlinear transform should be N. The degree of a nonlinear
transform is the number of non-zero derivatives that the
function describing it has. The degree is also the polynomial
order with which functions can be approximated using a
Taylor series expansion (Spiegel, 1983). Another issue is
the directions in which the nonlinear transform can be
oriented in the input space. We refer to the orientation or
direction along which the maximum curvature occurs as the
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Fig. 1. Neural network implementation of the quadratic nonlinear MDF for
low input dimensions.

principal orientation of the transform. This is an extension
of the concept for elliptical or hyperelliptical quadratic
transforms where the major axis of the ellipse is the direc-
tion along which the maximum curvature in the output
quadratic transform occurs. We feel that transforms with a
larger rank and more possible principal orientations are
preferable since they are more general. We also feel that
nonlinear transforms with adjustable (flexible) degrees are
more powerful than ones with a fixed degree. We verify this
through experiments. In Sections 3 and 4, we will address
the above three properties for our nonlinear MDF algorithm
and for other nonlinear transformation methods on high-
dimensional input data where S <N or § < N.

2. Nonlinear MDF formulation: measure and general
solution

In this section, we detail our nonlinear MDF neural
network concept. We first define the discrimination measure
we use in the MDF neural network for pattern recognition
problems involving discrimination or classification. The
weights of the MDF neural network are the solutions that
maximize this discrimination measure. For simplicity of
explanation, we refer to the MDF neural network weights
as transformation vectors.

Deterministic vectors and matrices are represented by
lower and upper-case letters with underlines (x and X).
Random variables are lower-case letters in sans-serif font
(X), and random vectors are lower-case bold (x). Classes are
represented as random vectors X;, X, with corresponding
mean vectors g, i, and covariance matrices C;, C,. The
mean w and the covariance C of a random vector x are
w = E[x] and g:E[XXT] — MT. These statistics are
typically estimated from samples and, hence, only sample
(estimated) means and covariance matrices are available.
When considering a set of § sample data vectors in class
I, {xi,}, and Q samples in class 2, {x,,}, we describe them

by the sample data matrices X; =[x;; X -
Xo=1[Xa1 X2 - X0l

Our objective is to find a set of nonlinear transformations
(MDF neural network weights) on x that optimally discri-
minate between multiple classes in a reduced dimensional-
ity space. A general nonlinear transform on a random vector
X is y = f(x) and yields a random variable (feature) y. We
use techniques by which we express the nonlinear transfor-
mation as a linear one; this allows us to directly use earlier
linear techniques developed to obtain closed-form solutions
for the nonlinear transformations. We first nonlinearly trans-
form or map the input data into another space, and then
apply linear solutions for the MDF weights in this space.
Therefore, given an input vector x, we transform it nonli-
nearly into a nonlinear data space, xy = W(x). For example,
the nonlinear mapping ¥( ) could be a quadratic polynomial
transformation that contains linear and second-order input
cross terms. Then, the data mapped to the nonlinear space
would be

X;s] and

Xg = [ XX, Xy X1Xp XX xyxy 1, (1)
where H=N + N(N — 1)/2 is the dimension of xy. Xy
contains higher-order terms in the original input random
vector X. This higher-dimensional vector has N linear
terms and N(N — 1)/2 unique nonlinear cross-product
terms. This higher-order and higher-dimensional data vector
is linearly transformed to yield an output feature (random
variable) y = ¢TXH. Since the quadratic transform is writ-
ten as a linear transform with combination coefficients
(weights) {¢;}, linear solution techniques are used to obtain
the values for the coefficients {¢;} for a given application.
Note that a quadratic transform can also be written in matrix
form as y =b’x + x'Ax where A is a matrix and b is a
vector. We use the formulation in Eq. (1), since it allows
us to write the quadratic transform as a linear one and,
therefore, allows for a closed form solution in the Xy
space that is quadratic in the original X space. Note that
this can be generalized easily to yield polynomial mappings,
of any arbitrary order. The mappings to obtain xy are not
necessarily restricted to polynomial transforms.

Note that when the mapping Xy is a quadratic transform, it
can be expressed as a neural network with summation and
product neurons. Fig. 1 shows a neural network implemen-
tation of the quadratic MDF with N input dimensions and M
outputs (features). The neural network implementation of
the quadratic MDF is exactly the same as a Sigma—Pi neural
network. The Sigma—Pi neural network (Heywood &
Noakes, 1995) has linear summation (%) and nonlinear
product (IT) neurons; the number of inputs to the IT neurons
indicates the polynomial order of the neural network.

To derive our second-order nonlinear MDF algorithm, we
consider two classes of data described by random vectors x;
and x,. We create the augmented random vectors, X,y and
X,y for each class; these contain first- and second-order
terms as in Eq. (1). The corresponding augmented data
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Fig. 2. Example when the Fisher linear discriminant yields bad discrimination.

vectors for the two classes are {x;;} and {X,5}. We desire
to determine the M best transforms @y =[¢d, ¢, -+ dul
such that the transformed random vectors (output features)
for the two classes y; = @5x,y and y, = i x,y are sepa-
rated. Here, @y =1[¢; ¢ -+ Pyl is an HX M matrix
containing M basis function vectors ¢,,. Each output feature
(random variable) y,, of the feature vector (random vector) y
is the nonlinear (quadratic) transformation of the input
random vector X using a transformation vector ¢,,. This is
the general notation we use in this paper.

2.1. MDF discrimination measure

For discrimination, we want the projections (transformed
values) for each class to be separated in our new feature
space. Measures such as the square of the difference in the
projections of the class means that is used in the Fisher and
the ODV techniques are not robust enough to handle many
class distributions. Fig. 2 shows an example of a 2-D input
discrimination problem in which one class (‘O’) has one
cluster and the second class (‘ + ) has two clusters. The
Fisher linear discriminant (the vertical line in Fig. 2) sepa-
rates the means of the two classes and, thus, has some over-
lap between the two classes. The optimal linear
discrimination in this case is a horizontal line. The sample
projections of both classes on it are well separated, even
though the means of the two class projections are not. We,
thus, use the average squared difference of all projection
values for two classes. We expect this to be a better measure
of separation, since it does not use the means of the class
projections. As before, we initially consider two classes.

For discrimination, our goal is to compute M nonlinear
transformation vectors ¢,,, m=1, 2, ..., M such that the
output features (random variables) y{,, = ¢l x,y for class 1,
and y,,, = ¢! X,y for class 2 are well separated from
each other (in the statistical sense). Therefore,

the jlm should maximize E[(ylm_yZm)(ylm_yZm)T];
or equivalently ¢, is chosen to maximize

E[dl (X1 — Xon) (X1 — Xopy)” b,,]. This can be written in
more compact form as maximizing E[¢p,(x1zR 1 Pml,
where Ry, = E[(X1y — Xop)(X1yg — XZH)T] is a vector-
outer-product difference matrix. To better understand the
intuitive reasoning behind use of this discrimination
measure, we consider sampled data. We denote the output
of a class 1 sample using the nonlinear transformation
vector ¢, by ynis = &F x1qr; similarly, the output of a
class 2 sample is ymzq_ = ﬁg,)_cqu. For the projections of
the two classes to be best separated, we desire that [(yy,, —
ymzq)z] be large (or maximized) for all samples s and ¢ and
for all nonlinear transformation vectors ¢, | =m =M, i.e.
we maximize the mean squared separation between all class
1 and class 2 outputs using each transformation vector ¢,,.
This measure does not separate the means of the two classes;
instead it separates all pairs of samples in the two classes.
Thus, it can inherently handle classes with multiple clusters.
This property is also desirable for problems involving L > 2
classes where, implicitly, at least L clusters are present (i.e.
at least one cluster per class). Measures such as the Fisher
linear discriminant and the ODV cannot handle multiple
clusters and are, therefore, not well suited for L > 2 class
discrimination problems. For the discrimination measure in
the MDF algorithm, we also minimize the spread of the
transformed samples of each class, i.e. we minimize
n(Cus + Copby, for all ,, where Cyy = Elxyxiy] —
Wiy is the higher-order covariance matrix of class 1
and w,; = E[X,y]. Similarly, C,p is the higher-order covar-
iance matrix of class 2. Minimizing the sum of the output
covariances for the two classes ensures minimal intra-class
spread in the output feature space. Therefore, to determine
the best set of transformation coefficients ¢, that separate
classes 1 and 2, we maximize the new discrimination
measure

u M ¢TR12H¢
Ep = Epy, = = ,
P m; P m; O (Crt + Com) b

@
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where R,y = E[(Xig — Xop)X1yg — XzH)T]. An estimate
of this Rpy matrix 1is computed from the
data samples in «classes 1 and 2 as

(1/50) qu:1 S (i — Xogr) X1 — Xogn)' 1.

2.2. MDF solution

Ry =

The nonlinear transformation vectors that best separate
two classes are those that maximize the discrimination
measure in Eq. (2). Differentiating Eq. (2) with respect to
D,,, the ¢, solution must satisfy

[Ciy + Conl 'Ripn @y = Py A. 3)

Thus, the M best nonlinear MDF basis functions ¢, are the
M dominant eigenvectors of

[Ciy + Conl™'Rian. 4

The MDF algorithm automatically finds a closed-form solu-
tion for the best set of given nonlinear transforms. The
performance measure in Eq. (2) is a new contribution of
this work, as it allows data with multiple clusters per
class. The solution in Eq. (4) is only realistic for low-
dimensionality input data. Section 3 notes our new solution
for the high-dimensionality input data case.

3. Nonlinear MDF neural network for high-dimensional
data

For the high-dimensionality input data case of concern,
we restrict the nonlinear transforms used in the MDF to
polynomial ones. By varying the polynomial order used,
the shape of the resultant nonlinear decision boundaries
produced changes and allows for very general decision
boundaries as we will detail.

For image input data with high dimensionality N, one
issue in using general polynomial transformations is that
the on-line computation time (calculation of the VIPs
y = ¢! xp) is high O(N?), where p is the order of the poly-
nomial transformation (p=2 in the quadratic case).
Another issue is that the total number of training samples
S is now significantly less than the dimensionality of the
input (S < N and typically S < N); when S < N, the sample
covariance matrix Cy in Section 2 is degenerate and, hence,
cannot be inverted as required in Eq. (4). To solve these
problems, we use a restricted polynomial transform and a
new two-stage algorithm. We first transform the input image
to a low-dimensional M < S feature space using a new
performance measure that does not involve matrix inver-
sions. In the second stage, we then use the MDF measure
in Eq. (2) in this lower (M) dimensional space where the
matrix inversion of the covariance matrix is easy since
M < S. This entire approach is very new. We first discuss
the general concept of the type of transform we use
for image inputs and then detail our new two-stage MDF
procedure.

To avoid on-line computation problems, we use a

restricted nonlinear polynomial transformation that neglects
cross-product input data terms in the first stage. Specifically,
we raise the input data x =[x --- Xl T (corresponding to
pixels of the input image, when the input data is an image) to
the power p’ to produce the associated nonlinear input
vector x,y and new first-stage output features

N
_ Ty, _ 10 _ ! ! 4T
y—_ X, = Zd)ixi , Where X, = [XI; X‘g lei/] 5
i=1

(&)

The computation time for this first-stage operation is linear
in N,

OBN) + O(N) = O(4N) = O(N). 6)

In Eq. (6), we assume that raising each pixel to a power p’
requires three operations (a log operation, followed by a
multiplication by the polynomial power p’ and an antilog
operation), and that the vector inner product (VIP) requires
N computations (since it does not involve cross-product
terms).

For the first stage, we choose the transform @ '\; to maxi-
mize the new discrimination measure E'y = Q},,T&zpl D,
(i.e. there is no denominator as in Eq. (2)). Here, Ry, is
calculated for the new data vectors X, and contains higher-
order correlation information about the input data. The &'},
solutions are the dominant eigenvectors of Ry,,. Note that
the new discrimination measure E'p does not require a
matrix inversion as occurred in Eq. (2) and, thus, computa-
tion of the transforms ¢’y to use is easy and possible. These
¢’y transform an image input of dimension N into a
nonlinear feature space y' ), = @7 X, of reduced dimension
M = § < N. The matrix Ry, is symmetric and, therefore,
the eigenvectors ¢, b, ..., ¢}, are orthornormal (Strang,
1980). Thus, the features y'm in the first-stage output random
(feature) vector y'Mz [y'l y/m y'M]T are uncorre-
lated, i.e. E(y'y') =0 for i # j.

In the second stage, we nonlinearly transform the reduced
M dimensional output feature random vector y'y, to the
power p to produce the higher-order features
Vi, = Ly" y¥ % )", and then compute a second
transform @g to yield the final nonlinear output feature
space of dimension K, yx = Q,{y'Mp. Note that the nonli-
nearities introduced in the two stages are different (p’ in
stage 1, and p in stage 2); this is expected to produce
more general nonlinear transforms on the input image
data. We choose M features (or basis functions) in stage 1
to be smaller than the number of training sample data S, i.e.
M = §. This allows us to use the standard Ep performance
measure in stage 2, since its sample covariance matrix C,
can be inverted easily. The second stage transform @y we
use maximizes the measure in Eq. (2) applied
to the new y', random vector. Specifically, the
transform @y maximizes the discrimination measure
Ep = [@kRip, P/ Pk(Cyy + Cop) P, where Cyy Co,
and R, are the intra-class covariance and inter-class
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Fig. 3. Neural network implementation of the nonlinear MDFs for high-
dimensional inputs.

difference  correlation matrices of the reduced
M-dimensional feature data y’ mp- The set of transformations
@y are, by analogy to Eq. (4), the dominant eigenvectors of

[Cy, + sz]_lﬂlzp- @)

Since the feature space y’y, (and y’ wp) has a dimensionality
M = S, the inversion of the matrix in Eq. (7) is trivial.

Note that our first stage measure does not minimize the
intra-class spread of class projections; however, this is done
in the second stage. We also note that the number of on-line
computations to obtain K output MDF features in the second
stage with M features in stage 1 is

30(N) + MON) + O(M X K) < O(N) = MO(N). ®)

which follows from Eq. (6). Thus, our new two-stage
nonlinear algorithm has a closed-form solution and has
on-line computational complexity of order N.

This two-stage nonlinear MDF transform for image input
data can be expressed as a neural network with polynomial
activation functions. Fig. 3 shows its implementation for
high-dimensional inputs with N dimensions, M features in
the first stage, and K output features in the second stage. The
neural network implementation uses N input neurons with
polynomial activation functions (p'), M summation neurons
in the hidden layer with polynomial activation functions (p),
and K neurons in the output layer.

3.1. Rank and other properties of the two-stage MDF
transformations

We now discuss some aspects of the two-stage MDF for
high-dimensional inputs. Specifically, we will detail the
variety of the types of transformations or decision surfaces
it can produce in terms of the rank, principal orientation, and
degree of the transform. We analyze nonlinear MDF trans-
forms with only integer-valued polynomials; polynomial
transforms with real-valued polynomial orders are hard to
analyze mathematically and, hence, are not discussed here.
Special attention is paid to quadratic two-stage transforms,
since their properties are well known and easy to analyze.

We first show that the two-stage MDF can produce trans-
forms with any principal orientation and that it can yield
full-rank transforms that curve in all N input dimensions.

However, it cannot produce both full-rank transforms with
any principal orientation simultaneously. We analyze and
prove this only for the quadratic case.

We first explicitly write the k-th output feature from
the second stage of the MDF neural network for a given
input data vector x with any polynomial orders p’ and
p. The first stage transform is y/y, = Qﬁwrglpf. The
nonlinear transform of the features from the first stage
using the transform matrix @ yields a k-th nonlinear
output feature, y; = K[y v, = Y0i Byl  Since
yh, = ZJALI q’>]'mxj" for m=1, 2, ..., M, the k-th output
feature for the two-stage nonlinear MDF has the general
form

M P

N
= | bl D bl | | ©)

m=1 j=1

The transformation in Eq. (9) contains cross-product
terms of the input pixels x;. For example, with p' =1
and p=2, the k-th output MDF feature is y, =
ZnM1=l [d’mk(zg\]:l ZJN=I d)}md);m'xjxi)]-

The presence of the cross-product terms allows the
nonlinear MDF output transformations to have any princi-
pal orientation as we now show. When p’ =1, the k-th
output MDF feature is

M
Ye= . Gy (10)

m=1

This involves a sum of M linear transforms (VIPs) of the
input data with M transformation vectors jl' = Where each
VIP is raised to a polynomial power p. Eq. (10) can then be
written as a weighted sum of nonlinear functions as
y= Z%:I a,fw!x). We prove in Appendix A that such a
nonlinear transform a,,f (m,{,)g) curves in only one dimension
in the input space, with a principal orientation along
¢, = w,,. Therefore, M such linear combinations have a
principal orientation in the subspace spanned by the M
transformation coefficients ¢, ¢, ..., ¢),. Therefore, an
MDF with p' = 1, and any p can have any principal orien-
tation because of the cross-terms in Eq. (10). Its principal
orientation is determined by the subspace spanned by the M
transformation coefficients ¢', ¢5, ..., ¢),. The rank of such
a transform is only M, since each term in the summation in
Eq. (10) is of rank one as proved in Appendix A.

The two-stage MDF can yield full-rank (V) transforma-
tions. We now prove this for the quadratic case only (p' =2
and p = 1). The k-th MDF output feature in this case is

M N
o= | bu| D i | |- (11)
m=1 j=1

It can be written in matrix notation as

M
=D b A,0], (12)
m=1
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(b)

Fig. 4. Loci for the transformations from the first stage of the two-stage MDF for 3-D inputs produced with different p’ first-stage polynomial powers. (a) p’ = 2.

b p'=5.

which is a linear weighted sum of M quadratic transforms.
Each quadratic transformation matrix A, is an NXN
diagonal matrix whose diagonal elements are the first
stage MDF transformations coefficients ¢',. The rank of
each A, is determined by the number of non-zero MDF
coefficients in gl’ - Therefore, the maximum rank of the
quadratic transformation matrix A,, is N if all of the corre-
sponding MDF coefficients in ¢',, are non-zero. We now
consider the rank of one output MDF feature in Eq. (12),
which is a linear combination of M quadratic transforms,
each of which can be of full rank. Since 2%21 GouX' A,x is
the same as )_cT(Zﬁle b ,)x, we can write (Strang, 1980)

M M
rank(z %m) = min{N, D rank(cbmkf_\m)}
m=1

m=1

M
= min{N, D rank(ém)}. (13)
m=1

The maximum rank of the nonlinear transformation can,
thus, be N, since each A,, can be of full rank as discussed
earlier, and can curve in all input dimensions. However, the
quadratic transformation matrix Z%:l(d)mkém) does not
contain any cross-product terms. Therefore, the principal
orientation can only lie along the input axes.

We now discuss the degree of the transformations
produced by our two-stage MDF algorithm. In the two-
stage MDF, the effective polynomial order of the transfor-
mation is p’ X p as we see from Eq. (9). The optimal poly-
nomial p’ and p values are determined automatically from
training data for a specific application as discussed later in
Section 5. In order to visually illustrate the effects of differ-
ent polynomial orders on the decision boundaries, we show
3-D input data examples in Fig. 4 with p=1 and
M= K= 1. In each figure, the loci of nonlinearly related
input data that are transformed to the same MDF output
feature value are shown as a nonlinear surface in the 3-D
input space. Note that closed decision boundaries can be
obtained with a quadratic transform (p’ =2 in Fig. 4a). A

fifth-degree polynomial transform (Fig. 4b) produces a more
complex decision boundary than a linear one. We show in
Section 5 that such higher-degree nonlinear transforms are
needed for some discrimination problems.

3.2. Other theoretical aspects of the two-stage MDF
transformations

We now show that our new two-stage nonlinear transfor-
mation technique specializes to some well-known image
processing methods for specific choices of the nonlinearities
pand p’. For p’ = p = 1, the operations in both stages of the
two-stage MDF are linear and, thus, our nonlinear
transforms for images can emulate linear filtering opera-
tions at the image center. For high positive and negative
values of p’, some other interesting transforms are obtained,
as we discuss next.

We show in Appendix B that for the case when Py is a
diagonal identity matrix (with K= M), and p =1/ p/, our
nonlinear MDF is exactly the same as the well-known
weighted p-norm operation. The weighted p-norm has
been used for image classification using ideas from fuzzy
morphology (Gader, 1992), where both the coefficients ¢,
and the nonlinearity p are determined iteratively. We show
in Appendix B that for the case when p’ — — o0 (or p’ < 0)
the output nonlinear MDF feature for a given data sample
image X is y = min({x;}), which corresponds to the mathe-
matical morphology operation of erosion (Dougherty, 1986)
over the i image pixels corresponding to the nonzero MDF
coefficients {¢;}. Therefore, in this case, the MDF NN
weights (transformation coefficients) ¢,, correspond to a
morphological structuring element whose size is the same
as the input image size. The ‘on’ pixels in the structuring
element are the non-zero MDF coefficients, and the ‘don’t-
care’ pixels are those with zero (or close to zero) MDF
coefficient values (Dougherty, 1986). When p’ — + oo (or
p' > 0), we prove in Appendix B that the max operation is
approximated by our MDF, which is the morphology opera-
tion of dilation. Note that more complex morphological
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Fig. 5. A neural network for nonlinear PCA feature extraction with one
hidden layer.

operations such as closing (dilation followed by erosion)
and opening (erosion followed by dilation) can also be
implemented by using two two-stage MDF operations in
sequence. This generality of our transform to various
well-known and diverse image processing operations
makes it applicable to a variety of image processing and
feature extraction problems. We will show experimentally
in Section 5 that the nonlinear MDF automatically selects
the correct values of the polynomials to emulate the max,
min, and quadratic operations when needed.

4. Other nonlinear methods for high-dimensional inputs

In this section, we compare the rank, degree and principal
orientation of the transformations produced by the two-
stage MDF (Section 3) with those for other relevant techni-
ques on high-dimensional input data only (large N where
S < N, with the additional constraint that S < N for image
inputs). The first methods we consider are neural networks
for dimensionality reduction and feature extraction (Baldi &
Hornik, 1989; Kramer, 1991) including nonlinear principal
component analysis (nonlinear PCA) (Karhunen &
Joutsensalo, 1994, 1995). We consider these neural network
methods since they perform nonlinear transforms for dimen-
sionality reduction or feature extraction of high-dimensional
inputs. The second method we consider uses kernel-based
techniques for feature extraction (Scholkopf et al., 1998)
and classification (Cortes & Burges, 1998; Vapnik, 1995).
We analyze these kernel-based methods since, like the MDF
approach, they note that one can linearize a nonlinear trans-
formation to solve for the nonlinear mapping coefficients
(Scholkopf et al., 1998) and they discuss polynomial trans-
formations on input data that are similar to those in the
nonlinear MDF. Both nonlinear PCA neural networks and
kernel-based methods implement transforms that involve
linear weighted combinations of the input data passed
through a nonlinearity. We now show that such nonlinear
transformations have limited rank and a fixed degree
compared to the MDF, which yields full-rank transforma-
tions (Section 3.1) and with variable degree (neural network
activation functions) that is automatically selected. The
technique we use to select the degree is discussed in Section
5. We first describe the nonlinear PCA neural networks

(Section 4.1) and kernel-based techniques (Section 4.2);
we then (Section 4.3) discuss the form of their nonlinearities
and their transformations in terms of their rank, principal
orientation, and degree in a unified manner.

4.1. Nonlinear PCA neural networks for dimensionality
reduction

Neural networks for dimensionality reduction of high-
dimensional input data have the constraint that the number
of neurons in the hidden layers should be less (and for the
case of image inputs significantly less) than the input dimen-
sion N. These neural networks are referred to as nonlinear
PCA neural networks in the signal processing and statistical
community. Most prior work on nonlinear PCA neural
networks considered a Hebbian-based neural network
(Karhunen & Joutsensalo, 1994, 1995) with a single layer
or with two layers or with two layers (one hidden layer), and
a multilayer perceptron autoassociative neural network
(Baldi & Hornik, 1989; Kramer, 1991). We shall only
analyze the first case, since they are more commonly used
for dimensionality reduction. The architecture of a neural
network for dimensionality reduction of N dimensional
input data is shown in Fig. 5, with N input neurons, M
hidden layer neurons, and K output feature neurons. In
these nonlinear PCA neural networks for feature extraction
(and most other neural networks, including the multilayer
perceptron), the first (input) layer is transparent with a linear
activation function f{x) =x. For dimensionality reduction
with large N, we require M and K < N. The M < N second
layer neurons have nonlinear activation functions f{ ) (typi-
cally sigmoids, tanh, etc.), and have M inter-connecting
weight vectors w,, (from each input to the M neurons in
the hidden layer). The m-th hidden layer neuron’s output
is f(y,%_c). We will show that these hidden-layer neurons
have a significant effect on the performance of neural
networks on high-dimensional inputs when M < N. The K
output neurons have linear activation functions and yield
the final K < N output features. For the general two-layer
nonlinear PCA neural network in Fig. 5, the output at the
k-th output neuron can be written as

M
Ve = V@ = D wuf (W), (14)

m=1

where w,,; is the weight between the m-th hidden layer
neuron and the k-th output layer neuron.

Our two-stage MDF neural network in Fig. 3 is similar to
that of the nonlinear PCA neural network (Fig. 5), except
that the activation functions at the input and hidden-layer
neurons are polynomial powers (they can be different in the
two layers). In the MDF neural network, the neuron activa-
tion functions are adapted; in nonlinear PCA neural
networks they are fixed (sigmoid, tanh, etc.) and nonlinear
functions are only present in the hidden layer.

Another neural network approach to nonlinear PCA
(Baldi & Hornik, 1989; Kramer, 1991) uses the architecture
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of Fig. 5 with K= N output neurons during training and
autoassociative learning (the desired output is the input).
After training, the output layer is discarded and the M
hidden layer outputs are the reduced-order nonlinear PCA
features. Both of these nonlinear PCA neural network
dimensionality reduction techniques have very similar
architectures after completion of training. Use of nonlinear
error measures (Karhunen & Joutsensalo, 1995) and
sigmoid, tanh, etc. activation functions (Karhunen &
Joutsensalo, 1994, 1995) ensures use of higher-order statis-
tics, and nonlinear transformations of the input. However,
nonlinear PCA neural networks are intended for represen-
tation and not for discrimination.

4.2. Kernel-based nonlinear techniques

Kernel-based methods are categorized into nonlinear
kernel PCA representation (Scholkopf et al., 1998) and
support vector machines (SVMs) for classification (Burges,
1998; Cortes & Vapnik, 1995). Kernel PCA is a nonlinear
extension of the linear PCA method. For the high-
dimensional case being considered, the authors of kernel
PCA note that because of the computation problems noted
in Section 3, solutions using all explicit higher-order cross-
terms of the input data are not realistic. Instead, they
consider the output feature to be of the form

S
Y= aph (w;.x), (15)
=1

where the kernel function #'(w;X) is typically a linear
combination of the input data x with ‘weights’ w; (these
weights are the training data vectors x;) followed by a
nonlinear mapping. Thus, the kernel-based PCA outputs in
Eq. (15) are of the same form as Eq. (14) for nonlinear PCA
neural networks with the summation over S, not M. The
advantage of kernel PCA is that the nonlinear solutions
are obtained in closed-form while ensuring low on-line
computational complexity through the use of kernels instead
of explicit higher-order mappings. Polynomial kernel-based
PCA methods (Osuna, Freund & Girosi, 1997; Scholkopf et
al., 1998) are quite similar to the polynomial MDF trans-
forms; they use kernels of the form 2" (w,x) = (1 + wlx)P,
where p is the polynomial order and is typically chosen to be
a positive integer. However, these kernel PCA methods are
only intended for representation; classification is of more
concern to us.

Support vector machines (SVMs) (Vapnik, 1995) for
classification involve designing classifiers based on only a
few so-called support vectors that lie close to the decision
boundary between two classes. Linear SVM calculates a
linear basis function w that maximizes the minumum
distance between classes. It is (Osuna et al., 1997; Vapnik,
1995) a linear combination of the V training vectors (support
vectors) x; that lie close to the samples in the other class,
b= ZZV:I a;z;x;, where the a; are the solutions for the non-
zero Lagrange multipliers of a quadratic cost function and

the z; are the desired output value for the i-th sample.
Therefore, the SVM output for an unknown test input X is
y=¢'x= Z,Vzl a;zw! x where we denote the support
vectors x; as w; for consistency. Nonlinear SVMs use
nonlinear kernel mappings of the input data 2" (x,w;), simi-
lar in concept to kernel PCA (Eq. (15)), to yield nonlinear
outputs

v
y =D @iz (5w, (16)
i=1

for input data x with the summation over the V support
vectors. A commonly used polynomial kernel is /" (w, x) =
(1 + w!x)’ as used in kernel PCA. Unlike the kernel-based
PCA solution, however, the a; Lagrange multiplier solutions
in Eq. (16) in the SVM are obtained iteratively (Osuna et al.,
1997; Vapnik, 1995). Solving for the Lagrangians g; in the
SVM is a minimization problem involving a quadratic form
matrix (Burges, 1998; Osuna et al., 1997) that is completely
dense and of size § X S. This implies that when the training
data set S is large (=5000) (Osuna et al., 1997), this problem
cannot be solved on a PC or equivalent computer without
data and problem decomposition (Osuna et al., 1997).
Another issue in the SVM is that when the data classes
overlap, a set of slack-variables are used that measure the
amount of misclassification in the SVM (Osuna et al., 1997).
In such a case, the SVM requires a user-defined ‘cost-
parameter’, which is a measure of the amount of misclassi-
fications that will be tolerated (Burges, 1998; Cortes &
Vapnik, 1995; Osuna et al., 1997). We now discuss the
properties of the nonlinear transformations produced by
these other nonlinear transformation methods.

4.3. Theoretical properties of transformations by nonlinear
PCA and polynomial kernel-based methods

4.3.1. Ranks of nonlinear PCA and kernel-based methods
We will now derive the ranks of the nonlinear transforms
produced by nonlinear PCA neural networks, polynomial
kernel PCA, and polynomial SVMs. Note that the nonlinear
transformations produced by two-layer nonlinear PCA
neural networks (Eq. (14)), polynomial kernel PCA (Eq.
(15)), and polynomial SVMs (Eq. (16)) have the same
form with the main difference being the number of terms
in each summation (M, S, and V, respectively). All of
these methods involve the summation of linear weighted
combinations of the input x passed through a nonlinearity.
In Appendix A, we prove that each nonlinear transform of
the form f(w'x) is of rank one, regardless of the mapping f( )
used. We also show in Appendix A that M linear combina-
tions (weighted summations) of such transforms would
curve in at most Minput dimensions. Therefore, nonlinear
PCA neural networks (Eq. (14)) produce nonlinear trans-
forms of maximum rank M (since M hidden layer neurons
are present). We feel that nonlinear transforms produced by
neural networks with more hidden layers (>1) also have
rank M. However, we do not have a rigorous proof for
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this. These three other nonlinear techniques noted, thus,
produce transforms of rank M, S, and V, respectively.
Note that since M, S, and V are all < N for high-dimen-
sional inputs, none of these other nonlinear techniques can
produce closed surfaces (transforms that curve in all N input
dimensions). The two-stage MDF can produce nonlinear
transforms that can form piecewise-closed surfaces in the
input space (Section 3). We note that support vector
machines that use other kernel functions, such as radial
basis function kernels, could produce full-rank nonlinear
transforms since they involve a weighted sum of exponen-
tials of the squares of input data and the training samples,
similar to a weighted sum of quadratic transforms that our
nonlinear MEF implements with a second-order polynomial
in the first layer (stage).

We have not seen any prior theoretical comparison of the
ranks of these different nonlinear transforms. Most prior
work on SVMs (Burges, 1998; Osuna et al., 1997;
Scholkopf, Burges & Vapnik, 1995) involved cases with
S > N, where the training set size exceeds the input dimen-
sionality. We have not found any prior reference that theo-
retically discusses the effects of the types of transformations
with varying training set sizes. Malthouse (1998) proved
that nonlinear PCA transformations cannot produce closed
surfaces. His proof assumed smooth transfer functions f{ ) in
the hidden layer; our proof holds for any transfer function
S0, including threshold transfer functions. We note that for
the nonlinear PCA neural network, if M is increased (more
nonlinear PCA features are used), the number of neural
network weights increases and so does the size of the
required training set. For dimensionality reduction, M < N
is needed.

4.3.2. Principal orientation of nonlinear PCA and kernel-
based methods

We now address the principal orientation each nonlinear
transform allows. We showed earlier (Section 3) that the
two-stage MDF can yield transforms with any principal
orientation. Nonlinear PCA neural network transformations
curve in the subspace spanned by the second layer weight
vectors W=[w; w, --- W, ---Wy], and therefore, the
principal orientation also occurs in this subspace. Trans-
forms by polynomial kernel PCA have principal orientation
lying in the subspace spanned by the S training data samples
X;; principal orientations of the polynomial SVM transfor-
mations lie in the subspace spanned by the V support
vectors. Therefore, these nonlinear techniques can have
transforms with any principal orientation in the subspace
spanned by the M weights (for nonlinear PCA), by the
transformation vectors wj, Wp, ..., Ws (for polynomial
kernel-based methods), and by the ¢, ¢, ..., ¢y (for the
nonlinear MDF algorithm).

4.3.3. Degree of various nonlinear methods
The degree of the different nonlinear transformations is
now addressed. The degree for nonlinear PCA neural

networks and polynomial kernel-based methods (including
polynomial SVMs) are fixed in advance (since the neuron
activation function or the form of the polynomial kernel
function are fixed), whereas the degree of our two-stage
MDF transforms can be anything and is determined
automatically based on training set data as the values that
maximize our new discrimination measures Ep and E'p. We
expected this property of the two-stage MDF neural network
to be advantageous compared to fixed-degree transforma-
tions. Since the activation functions used in the nonlinear
PCA neural networks are continuously differentiable up to
any order, it is expected that nonlinear PCA neural networks
could yield transforms of any degree. The degree of the
transformations for polynomial kernels (Cortes & Vapnik,
1995; Scholkopf et al., 1998) is p and is similar to that of the
nonlinear MDF (Section 3), but is fixed in advance and is
not automatically selected based on the training data.

4.3.4. Computational complexity of various nonlinear
methods

The training (off-line) complexity of the different
nonlinear methods varies considerably. The weights in the
neural networks for dimensionality reduction are computed
iteratively. The solution for the SVM weights involves an
iterative quadratic optimization scheme. It is well known
that most iterative schemes are slow and have associated
convergence problems (Casasent et al., 1998). Both the
MDF and kernel PCA have a closed-form solution and,
hence, the training time is not an issue.

We now address the on-line computation times for the
different approaches. The number of on-line computations
for nonlinear PCA neural networks is proportional to
MO(N), where a VIP requires ()(N) operations; kernel
PCA features require SO(N) computations, and SVM
outputs require V(O(N) computations. Each two-stage MDF
nonlinear feature can be computed in =MO(N) time
(Eq. (8)). Typically, V=M and, thus, the on-line computa-
tion times for nonlinear PCA, SVMs and MDFs are compar-
able and are much less than those for kernel PCA. In some
cases, the number of support vectors V can become large
(=1000 in an application involving face detection, Osuna et
al., 1997). Therefore, kernel-based techniques could have a
greater on-line computational load compared with MDFs
and nonlinear PCA neural networks.

5. Results

We now address the performance of the two-stage MDF
neural network for several cases involving data classifica-
tion (discrimination). The performance of the MDF neural
network for discrimination (classification) is compared with
that of a standard multilayer perceptron (MLP) neural
network, linear Fisher linear discriminant and ODV discri-
minant methods, and with that of polynomial support vector
machines. PCA methods are not considered as they do not
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address discrimination/classification (we have shown
earlier, Talukder & Casasent, 1998, 1999, that our MDF
neural network output features designed for discrimination
are superior to PCA ones for problems involving classifica-
tion). Special attention is paid to the high-dimensional input
data case. In order to adequately simulate the high-
dimensional case, we constrain the number of hidden-
layer and output-layer neurons (M and K) in the MDF
and MLP neural networks to be less than the input dimen-
sionality N, i.e. M, K < N in our experiments. We consider
two cases: (1) where the number of training samples S = N,
the dimensionality of the input data; and (2) the high-dimen-
sional case where S < N. We theoretically proved earlier
that standard neural networks, and polynomial kernel-
based methods such as the polynomial support vector
machine provide limited nonlinear transforms for high-
dimensional input data where S <N. We will verify this
through experiments in this section. Most prior experimen-
tal results using polynomial-kernel SVMs (Burges, 1998;
Osuna et al., 1997; Scholkopf et al., 1995) on synthetic
datasets (Burges, 1998) used S > N, and typically involved
only 2-D inputs (N = 2) for purposes of visualization. Prior
work on SVMs with real datasets including the SVM face
detection system (Osuna et al., 1997) used §=5000-—
50,000 training samples with an input dimensionality
N = 283 face pixels, while the SVM character recognition
system (Scholkopf et al., 1995) used S = 7300 with input
images consisting of N =16 X 16 = 256 pixels. Very little
work has been done using SVMs with § < N; Roobaert and
Hulle (1999) considered multi-view object classification of
N =32 X32=1024 pixel input images with a training set
sample size of S = 4 per class.

We consider two-dimensional (2-D) and fifty-dimensional
(50-D) input data cases. For the case where S = N (Section
5.1), we use only 2-D inputs and M = K = 1 neurons in the
MDF and MLP neural networks. One purpose in using 2-D
inputs is for visual illustration of the nonlinear transforms
produced by the MDF neural network and the SVM classi-
fier. For the case where S < N (Section 5.2), we use 50-D
input data. In all these synthetic case studies, we consider
two input classes where class 1 samples are marked as ‘O’
and class 2 samples as ¢ + °, with equal prior probabilities for
each class. For the different 2-D case studies, we show the
output feature transformations (mappings) as contour plots;
in the MDF plots, each line (contour) corresponds to the set
of points in the input data that map to the same output feature
value. In the SVM plots, the SVM MATLAB plotting routine
shows the contours as different gray-scale shaded regions.
Since all our cases are discrimination applications, the deci-
sion boundary is parallel to the contour lines (for linear
transformations) or curves (for nonlinear transformations).

We used the following performance measures to evaluate
results. For all 2-D input cases, we evaluate performance of
a technique using a visual criterion and the mathematical
measure P¢ (probability of correct classification) of the test
samples.

We also analyze the on-line computation time for each
method. For MDF and multilayer perceptron neural
networks, the computation time is dependent primarily on
the number of neurons M used in the first hidden layer
(Eq. (8)); for SVMs, it is dependent on the number of
support vectors V.

MDF neural network for discrimination

Since the purpose is to test the performance of the MDF
neural network (NN) for high-dimensional inputs, we used
the two-stage nonlinear MDF (Section 3). For 2-D inputs,
we used only M=K=1 neurons in the MDF neural
network. For 50-D input data, we varied M = K from 1 to
41 in increments of 10.

We used an exhaustive search method to pick the p’ and p
values in the two-stage nonlinear MDF neural network for a
specific application. The nonlinear MDF solution for each p’
and p is obtained (from the training set) in closed-form by
searching through the p’ and p range (+20) in increments of
0.1 for polynomial values between —3 and +3, and in
coarse increments for higher polynomial values between
+3and +19, and —3 and —19. Note that we use real-valued
and negative-valued polynomials; this is expected to give
more general transformations than positive-integer-valued
polynomials. The value of the p’ and p pair that gave the
best discrimination Ep for M = K =1 for the training set
was selected. This search is fast and the exact p’ and p
choices are not critical.

Multilayer perceptron for discrimination

The MLP NN architecture we compare against our MDF
NN for high-dimensional inputs had two hidden layers; it
has been shown (Bishop, 1995, p. 123) that this can produce
disjoint non-convex closed decision boundaries. Since the
purpose of this case study is to simulate high-dimensional
inputs, for which dimensionality reduction is needed, we
constrained the number of hidden layer neurons M in the
second and third layers to satisfy M < N; we used equal
number of neurons in both hidden layers. The number of
neurons in the output layer was equal to the number of
classes, two; each input sample is classified using a
winner-take-all criterion at the output layer. The learning
rule used to train the multi-layer perceptron was the
Levenberg—Marquardt algorithm (Bishop, 1995) that
approximates the Hessian (second-order derivative) matrix
while constraining the step size in the weight update to be
small. We found this to give better P¢ performance than
other methods when implemented in the MATLAB Neural
Network Toolbox. The number of training epochs was set to
107 iterations in batch learning mode, with the maximum
training time set to 10 h. All neural network weights were
randomly initialized to values in [—0.1, 0.1]. The default
values were used for the other parameters in the neural
network learning rule. Prior work (Denoeux & Lengelle,
1993) noted that random weight initialization resulted in
training problems with multilayer perceptron neural
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(b)

Fig. 6. (a) 1-D nonlinear MDF neural network contour path: Contour plots for 2-D input data with circularly-distributed classes superimposed on the training
data samples using 1-D nonlinear MDF output features, and (b) SVM contour plot: the corresponding SVM decision boundary shown as a dark line with shaded

regions representing SVM output contours.

networks, generalization problems, and convergence to local
minima in some cases. We noticed these problems with the
multilayer perceptron in our synthetic data case studies.

SVMs for discrimination

The SVM software written in MATLAB code by Steve
Gunn was used (www.isis.ecs. soton.ac.uk/resources/
svminfo/). We used the polynomial kernel SVM for compar-
ison purposes, since it is closer to our MDF neural network
than are other kernels. The parameters associated with the
SVM polynomial kernel method are: the cost function C that
signifies tolerance to misclassification errors (higher values
imply less tolerance); and the polynomial order. After experi-
mentation, we found that C = 100 yielded good performance
on 2-D input data. For lower values of C, P performance was
poorer, and for higher values of C overfitting occurred
(because all/most training data samples were correctly classi-
fied); a similar trend was observed by others (Gunn, 1997).

ED°

P Stage 2

P Stage 1

Fig. 7. Ep, versus p’ and p for the circularly-distributed 2-D input data in
Fig. 6.

The polynomial order used was also selected using a visual
criterion. Polynomial orders from two to 19 were tested.

5.1. Case studies with S = N

In this section, we evaluate the performance of the
different methods on 2-D (N = 2) cases where the number
of training samples is greater than the input dimensionality
S = N. We used two synthetic test cases that are not linearly
separable. We used a total of S = 100 training samples (=50
per class) in all 2-D cases. A larger number of S = 2000
training samples improved P test data performance slightly
in the case studies, but was not used due to the prohibitively
large training time of the SVM which involves an optimiza-
tion using a matrix of size § X S. Test set performance was
based on 2000 test samples (=1000 per class) to provide
statistically significant P- measures.

5.1.1. Case study—1 (circularly-distributed data)

The first data set is one in which one class enclosed the
other class samples within a circle. Samples were generated
with a uniform random distribution in [—1, 1]; those within
a radius of 0.5 from the origin were assigned to class 1 and
all others were assigned to class 2 as shown for the training
samples in Fig. 6a. A gap of 0.03 was present between the
two classes in training and test set data (Fig. 6). For this
class distribution, the optimal discriminant is a quadratic
transformation of the input data. The nonlinear MDF can
implement a quadratic transform if p’ =2, and p = 1. The
Ep discrimination measure in the MDF as p’ and p were
varied is shown in Fig. 7. It peaked at p' =2 and p=1;
this choice was selected automatically and it produces an
exact quadratic transform which is the optimal discriminat-
ing function in this case. The Pc for our nonlinear MDF is
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Table 1
P¢ and computation time for the circularly-distributed 2-D data on the test
set using different methods

MDF NN MLPNN MLPNN FLD SVM

MK=1) WM=1) M=2) (1 V=9
Pc (%) 100 66.4 100 652 100
Comp. time 1 1 2 1 9

therefore perfect (100%). Fig. 6a shows the MDF contour
plots superimposed on the 100 training samples. the SVM
output contours using a second-order polynomial kernel are
shown as shaded regions and the decision boundary is
shown as a solid line superimposed on the 100 training
data samples in Fig. 6b; the support vectors are the filled-in
circles close to the decision boundary. The test set Pc
performance of the different methods on the test data
samples is shown in Table 1. The MDF and SVM perfor-
mance was perfect. The multilayer perceptron neural
network (MLP NN) performed worse because it used only
M = 1 hidden-layer neuron and, therefore, can curve in only
one dimension in the input space as we proved earlier.
Therefore, it cannot produce a closed decision surface.
For M = 2 hidden-layer neurons, the multilayer perceptron
also gave perfect Pc performance because closed surface
transformations are obtained with two hidden-layer neurons
on 2-D input data, as we proved theoretically in Section 4.
The Fisher linear discriminant (FLD) also gave poor Pc
since it can only perform linear transforms of the input
data. The on-line computational complexity (computation
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Fig. 8. 2-D max-distributed input training data superimposed on the 1-D
nonlinear MDF contour plots.

time) of the SVM classifier is the highest (9), whereas the
other methods are significantly faster (Table 1, bottom row);
this occurred because the SVM algorithm chose V=9
support vectors.

5.1.2. Case study—2 (max function)

The second 2-D synthetic data set considered is one in
which the class label is determined by a max function.
Given a sample x of dimension N, it is a member of class
1 if max(x) is smaller than 0.75, else it is a member of class
2. This ensures approximately an equal number of samples
in both classes. The max of an N X 1 vector is defined as the
maximum of all of its N elements. Fig. 8 shows the training
data samples for the N = 2 dimensional case. A gap of 0.03
is present between the two classes (Fig. 8) for both training
and test data. Samples with such class distributions are not
linearly separable; hence, a nonlinear feature extraction
procedure is required. In fact, the optimal discriminant func-
tion would result in a mapping of the form y = max(x). A
max function is a nonlinear mapping that must curve in all
directions in the input space; hence, we do not expect multi-
layer perceptron neural networks to perform well on such
data with fewer M < N hidden layer neurons. Linear proce-
dures such as the Fisher linear discriminant are obviously
not expected to give good Pc on such data. As discussed in
Appendix B, for large positive values of p’ and very small
positive values of p, the two-stage MDF approximates the
max operation. In this case, p’ =15 and p=0.25 were
selected automatically in the MDF algorithm; we, thus,
expect the MDF to approximate the max function well.
This is seen to be the case, as visual inspection of Fig. 8
shows. The P¢ performance of the various methods on the
test data set are shown in Table 2. The P performance of
the MDF neural network was excellent (Pc = 99.7%). The
SVM with a second-order polynomial kernel also gave good
performance (Pc = 98.0%). The SVM contour plot for a
second-order polynomial kernel is shown in Fig. 9a. With
a larger polynomial kernel order of 19, SVM performance
improves slightly to Pc = 98.6%; this is due to the fact that
the higher-order polynomial SVM produces a decision
boundary that better approximates the max function as
seen in Fig. 9b. The P performance of the multilayer
perceptron neural network (MLP NN) with one neuron in
the hidden-layers (M = 1), and the Fisher linear discrimi-
nant (FLD) are worse with Pc =78.4 and 52.3%, respec-
tively (Table 2), as expected. This is due to the fact that both
these methods can yield transforms that curve in only one
dimension in the input space. The multilayer perceptron
with M =2 hidden-layer neurons has a better Pc = 97.6%
that is comparable to that of the MDF and SVM, since its
transformation can curve in both input dimensions. The
quadratic (second-order) kernel SVM algorithm chose
V =15 support vectors (determined from the training set),
resulting in a larger computation time (Table 2).

Our results on 2-D input data show that both the MDF and
SVM yield good classification performance on nonlinearly
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Table 2
Pc and computation time for the max-distributed 2-D data on the test set
using different methods

MDF NN MLPNN MLPNN FLD SVM

M, K=1) WM=1) M=2) (1) V=15)
Pc (%) 99.7 78.4 97.6 523  98.0
Comp. time 1 1 2 1 15

separable classes with S > N. When only one hidden-layer
neuron was used in the MDF and nonlinear PCA neural
networks (to simulate high-dimensional input cases), the
MDF yielded good Pc while the nonlinear PCA perfor-
mance was poor since its transformations with M <N
cannot curve in all input dimensions.

5.2. Case studies with S < N

In this section, we evaluate the performance of the differ-
ent methods on cases where the number of training samples
are less than the input dimensionality, S <N. This is a
simulation of high-dimensional input cases, such as image
data, with few training examples. We have seen only one
prior experiment of the SVM on cases with S < N (Roobaert
& Hulle, 1999). For our case studies, we used N = 50 (50-D)
input data, with a total of S = 25 training samples (=12 per
class). The number of test samples were 2000 (=1000 per
class) to provide statistically significant P- measures. We
used the same two hyperspherical and max-class distribu-
tion cases as in Section 5.1, but now in a higher (50-D) input
space. Note that both of these case studies require full-rank
nonlinear transforms for correct class separation (classifica-
tion). We also consider two other cases, one that involves
linearly separable classes, and another where the classes are
nonlinearly separable, but decision surfaces with full-rank
nonlinear transforms are not needed to correctly classify
them.

(a)

5.2.1. Case study—1 (linearly separable classes)

We first consider the simplest discrimination case when
one class is linearly separable from another class. We
consider nonoverlapping, perfectly separable classes with
a margin of 0.03 between them, which is an easy classifica-
tion problem. We expect all the methods to perform
comparably on this case study. The Pc performance using
the different methods are shown in Table 3. With one
hidden-layer neuron, the MDF neural network (NN) Pc
performance (99.3%) was similar to that of the MLP NN
(99.0%), and a single ODV feature (98.9%). The perfor-
mance of these last two methods improved slightly when
a larger number of hidden-layer neurons M and K=M
output features were used. In this case, p’=1 and p=1
were selected automatically in the MDF algorithm,
corresponding to a linear transform. The SVM performed
the best (Pc=99.5%). This case study illustrates that on
high-dimensional data with S <N, all techniques perform
similarly when the classes are linearly separable.

5.2.2. Case study—2 (quadratically separable data)

We will consider two quadratically separable cases. We
first consider the case when one class encloses another class
in only a few (D = 10) dimensions in the S =50 dimen-
sional input space. In this case, the optimal discriminant is
a quadratic nonlinear transform that curves in only the first
D = 10 dimensions of the N = 50 dimensional input space.
For the MDF neural network, we found the Pc training set
performance to peak at p’ =2 and p =1, i.e. a quadratic
transformation was automatically chosen. The performance
of the MLP NN and the ODV was good when a large
number of hidden-layer neurons (MLP NN) and output
features (ODV) were used. The polynomial SVM performed
well (Pc = 96.3%) since its transform can curve in a maxi-
mum of § > D dimensions, if all S training samples are
chosen as support vectors V. This example illustrates that
on high-dimensional data with S <N, all techniques
perform comparably when full-rank nonlinear transforma-
tions are not necessary.

Fig. 9. Plots of 2-D max-distributed training data with the corresponding SVM decision boundaries shown as dark lines and with shaded regions representing
SVM output contours for (a) SVM contour plot with p = 2 (second-order) : a second-polynomial kernel, and (b) SVM contour plot with p = 19 : a 19th-order
polynomial kernel. The support vectors are the filled-in circles close to the decision boundaries.
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Table 3
Pc values on 50-D linearly-separable test set data using different methods
with a total of § = 25 training samples

MDF NN MLP NN oDV SVM

M=1 M=1 M=5 1 5 V=17
Pc (%) 99.3 99.0 994 989 992 995
Comp. time (X O(N)) 1 1 5 1 5 7

We then considered a case where one class completely
encloses the other class, a closed decision boundary is
necessary; therefore, a full-rank nonlinear (quadratic) trans-
formation can separate the class best. Since S <N, we do
not expect the multilayer perceptron neural network or
SVMs to yield good P performance, as discussed earlier
in Section 4. The MDF neural network can produce closed-
decision surfaces, even when S < N, or § < N as we proved
in Section 3 and, thus, we expect its P¢ to be good for this
case study.

For the MDF neural network, we found the Pc training set
performance to peak at p’ =2 and p = 1. With these MDF
neural network parameters, we obtained excellent Pc
performance on the 2000 test samples with the same class
distributions. With only M = K =1 neurons in the MDF,
Pc=89.4% was obtained (Table 4). Increasing M and K
did not improve Pc for the MDF. Even though the MDF
transform is a quadratic one (which is the optimal transform
for this case), Pc performance is not perfect due to the small
training set size which leads to inaccuracies in estimation of
the MDF neural network weights and the thresholds to use.
In contrast, the multilayer perceptron neural network (MLP
NN) yielded only Pc=154.4% with M =1 hidden-layer
neuron or a better Pc=75% performance with M =41
neurons; this occurs since its transforms now curve in
more dimensions (at most 41 dimensions) in the input
space. However, its performance is still worse than that of
the MDF neural network. The linear ODV discriminant (the
extension of the Fisher linear discriminant to more than one
discriminating feature) gave comparable P performance to
that of the multilayer perceptron. The SVM classifier
yielded only Pc=52.6% with V=13 support vectors for
a second-order polynomial kernel. This low Pc occurs
because the polynomial kernel SVM can only produce
nonlinear transforms that curve in a maximum of V=13
(support vector set size) dimensions in the input space, as
we proved earlier in Section 4.3. A similar degradation in

Table 4

SVM performance with high-dimensional inputs has been
noted (Roobaert & Hulle, 1999) on other data when
N=32x%x32=1024 input image pixel values were used
with only S =4 training views per object. On this other
data, SVM P performance was seen to improve when
only average RGB color information from each pixel was
used (N =3) as inputs to the SVM classifier rather than
pixel data; thus, SVM performance was found to be signifi-
cantly better when S > N compared with § < N. In our case
study, the SVM P performance is worse than that of the
multilayer perceptron because the nonlinear transforms in
the SVM are constrained by the support vector set size
(V<8=25 in this case), while those in the multilayer
perceptron neural network are limited by the number of
second-layer neurons M used; we used M > S. The number
of weights in the neural network should be less than the
training set size for good generalization (Baum & Haussler,
1989). This is not satisfied here and generalization problems
were noticed in our tests. When a larger number of hidden-
layer neurons were used, test-set Pc performance increased
slightly to Pc = 78.2% with M = 55 hidden-layer neurons,
did not change significantly with larger M = 60, M = 65,
and decreased with larger M.

5.2.3. Case study—3 (max distribution)

We used a max distribution of dimension N = 50 for our
last case study with a total training set size of 25 samples
(=12 per class) and test set size of 2000 (=1000 per class).
A gap of 0.03 is kept between the two classes for both
training and test set data. Table 5 gives Pc results of the
various methods on this dataset. From training data samples,
polynomial values of p’ = 9 and p = 0.2 were automatically
selected for the MDF neural network. With these parameter
values, we obtained Pc = 76.2% with M = K = 1 neurons
and the best Pc = 77.3% with M = K = 11 MDF neurons. In
contrast, the multilayer perceptron neural network (MLP
NN) gave only Pc = 60.3% with M = 41 neurons; a slightly
better Pc=065.4% performance was obtained with
M = 552> S neurons. The SVM gave Pc=50.9% with
V=24 support vectors. As before, the SVM yielded
worse Pc results since the rank of its transformation is
limited by the training set size, while the transformations
for the multilayer perceptron neural network are limited by
the number of hidden-layer neurons. The ODF performance
was comparable to that of the multilayer perceptron neural
network. Therefore, the MDF neural network yields the best

Pc values on 50-D hyperspherically-distributed test set data using different methods with a total of only S = 25 training samples

MDF NN MLP NN oDV SVM
M=1 M=5 M=1 M=41 1 41 (V=13)

Pc (%) 89.4 87.2 54.4 74.7 44.6 73.1 52.6

Comp. time (X O(N)) 1 5 1 41 1 41 13
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Table 5

Pc values on 50-D max-distributed test set data using different methods with a total of S = 25 training samples

MDF NN MLP NN oDV SVM

M=1 M=11 M=1 M=41 1 41 (V=24)
Pc (%) 76.2 713 46.9 60.3 51.7 57.6 50.9
Comp. time ( X O(N)) 1 11 1 41 1 41 24

P results and the least on-line computation time (bottom
row in Table 5).

6. Summary

We have presented a new nonlinear feature extraction
procedure in a neural network formulation for data classifi-
cation. The weights of the neural network are obtained in
closed-form, thereby overcoming limitations with iterative
techniques. The activation functions for the input and
hidden-layer neurons are adapted. We proved theoretical
properties on the types of nonlinear transforms produced
by this neural network. It is shown to yield more general
transforms than other well-known nonlinear neural
networks and kernel-based methods. Results on synthetic
data are shown to support these theoretical analyses. We
have shown that when S < N and full-rank nonlinear trans-
formations are needed for discrimination, the MDF neural
network outperforms the polynomial SVM and multilayer
perceptron neural networks; when nonlinear transforms that
curve in only a few input dimensions are necessary for
discrimination, all methods perform comparably.

Our initial results with the MDF are encouraging and
indicative of its use in high-dimensional cases. Our prior
work on real (image) data sets in active vision and product
inspection applications (Talukder & Casasent, 1998) has
also shown its advantages in real problems. Future work
could address further comprehensive tests on standard
image data sets.
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Appendices. Proofs

In these appendices, we prove two theorems associated with
the nonlinear transformations produced by the nonlinear MDF,
nonlinear PCA neural networks, and kernel based methods.

Appendix A. Transformations produced by a nonlinear
mapping of a linear combination of input data

Theorem 1. Any nonlinear transformation ¥(x) of an
input datum x involving a linear weighted combination of
the input mapped through a nonlinear function f{ ) of the
form Y(x) = f(w Ty) folds or curves in only one dimension
in the input space with a principal orientation along w.

Therefore, a nonlinear transform of the form Y(x) =
Z,l,‘f:l a,f (m,Tng) folds or curves in a maximum of M dimen-
sions in the input space. The principal orientation of this
transform lies in the subspace spanned by the weight vectors
Wi, Wa, oey Wy

Proof. We derive our proof for this theorem using Taylor
series expansion to describe the nonlinear transforms. We
make use of two assumptions that appear to be intuitive
enough and therefore will not be proven. We shall make
use of the fact that the product of two nonlinear transforms,
each of which curves in a subspace in the input space, itself
curves in the same subspace. Similarly, the sum of two
nonlinear transforms, each of which curves in a subspace
in the input space, itself curves in the same subspace.

We first express the nonlinear transformations that involve
a linear weighted combination of the input x passed through a
nonlinear function f{ ), Y(x) = f(w T)_c), as a Taylor series
expansion of a single variable x (Spiegel, 1983):

fw'x) =ay + a;(w'x) + a;(w'x)* + az(w'x)’ + -

The coefficients, ag, ay, ... are determined by the n-th order
derivatives of the function f{(y) at y = 0. We consider vector
notation and write the Taylor series as

T (A1)

If we write each quadratic term x"ww’x, as a matrix trans-
formation, XTAWX, where A,, = ww!, the nonlinear transform

can be written in terms of the matrix A, as
fw') =ay + a;(w'x) + @A) + a7 A,x)

X0+ + a3’ 4,06 4,0 (A2)

We ignore the coefficients ay, a;, etc. for now without any loss
in generality and discuss the effect of each term in Eq. (A2).
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We shall show that each term in Eq. (A2) curves along the
same weight vector w and, therefore the sum of these terms
also curves along w.

Term 1 in Eq. (A2) is a constant, term 2 in Eq. (A2) is a
linear mapping along the vector w. The third term in Eq.
(A2) is a quadratic term of the form x”A,x where A,, = ww’
is of rank one. It has been shown in prior work (Weber &
Casasent, 1998) that such a quadratic transform curves only
in one dimension. From linear algebra, the pricipal orienta-
tion of this quadratic transform occurs along the vector w,
since the principal eigenvector is parallel to w.

The fourth term is a product of a quadratic term x"A,x
and a linear term w'x. The quadratic term has a principal
orientation along w as we discussed earlier, and curves or
folds in one dimension along w. The linear term also
changes linearly along the vector w. Therefore, the product
of these terms, that results in a third-order polynomial term
also curves or folds along the vector w.

The fifth term is a fourth order polynomial that is
Therefore, since each of the quadratic terms folds along w,
the resultant fourth-order polynomial formed by the product
also curves or folds along w.

The same argument holds for all higher-order polynomial
terms in the Taylor series expansion for fiw'x). Therefore,
the resultant sum of all polynomial orders in Eq. (A2), each
of which folds along w, itself folds only in one dimension in
the input space along the weight vector w. This proves the
first part of this theorem that any nonlinear mapping of the
form Y(x) = f(w Tg) curves in only one dimension in the
input space; the curvature occurs along w.

We will now prove that a linear combination of M such
nonlinear transforms curve or fold in a maximum of M
dimensions in the input space. A transform of the form

M
V@) = D a,f(wyx) (A3)
m=1

involves M vector inner products of the input data with M
weight vectors w;, W», ..., Wy, each passed through a
nonlinear mapping f{ ). Each term in the summation in
Eq. (A3) curves in one dimension in the input space as we
showed earlier, with the corresponding principal orientation
along w,,. Therefore, the sum of M such nonlinear trans-
forms as in Eq. (A3) curves in a maximum of M dimensions
in the input space with the principal orientation in the
subspace spanned by the weight vectors Wi, Wy, ..., Wy
Thus, the maximum rank of this transform is M.

Appendix B. Nonlinear MDFs as morphological
operators

Theorem 2. The two-stage nonlinear MDF for image

input data specializes to the p-norm operation under certain
conditions. It also emulates the min (morphological erosion)
operation on image data and the max (morphological dila-
tion) operation on image data for a specific case.

Proof. We derive our proof for this theorem in two steps.
We first prove that for specific values for the nonlinear MDF
coefficients and p’ and p, the nonlinear MDF is exactly the
same as a p-norm transform. We then prove that the
nonlinear MDF can perform morphological or linear filter-
ing operations.

The p-norm of a vector x is z,= (f+
B xﬁ)””, where the value of p is real, and can
vary from —oo to +00. The weighted p-norm of a vector x is
(Gader, 1992)

2y = (01X + dpxh + 3 + -+ + )7, (B1)

where p € {—o00, +o0}.

To derive the fact that the nonlinear MDF specializes to
the p-norm operation, we note that our two-step transform
can be written as a single-step nonlinear transform of the
input image X, yx = ®x(P41x” )P, where.” denotes each
element in the vector raised to the power p. If @k is a
diagonal identity matrix (with K= M), then the output
features are yx = (®)7x”)P. If p=1/p/, then yx =
(@ x”) "' “Writing the vector ¢ as ¢, =
[l Do & 17, the m-th output MDF feature is

Ym = (d)lmxl; + ¢2mxI2) + ot ¢mel1il)1/p/' (BZ)

This corresponds to a set of M (or K) weighted p-norm
transformations as in Eq. (B1).

To prove the morphological properties of the nonlinear
MDF transform, we consider the case when p' — + o0 and
p=1/p’, with the transformation matrix @ in the second
stage of the nonlinear MDF being an identity matrix with
K= M, as before. Then, the m-th output MDF feature is
given by Eq. (B2). We will now prove that the nonlinear
MDF transform can emulate the morphological dilation or
the max operation. Without any loss in generalization, we
assume that among the N pixels in the input image X, x;
(pixel 1) has the largest (maximum) gray value. Then, Eq.
(B2) can be written as

Y = I (B + BrCerty ¥+ o+ Py Cenicy YOI

(B3)
If all the MDF transform coefficients are equal, i.e.
@ = Phyy = -+ = P the output feature simplifies to
Yl (U Qo)+ o+ Gyl YOI (B4)

with a scaling factor ¢’},, which may be ignored. Note that
all of the ratio terms in Eq. (B4) (xy/xy), (x3/x1), ..., (xp/x7)
are less than 1, since pixel x; is assumed to have the largest
gray value, (x,/x;) < 1, (x3/x;) < 1, etc. If p’ — + oo, then
all of the ratio terms — 0 in the limit. Therefore, the output
feature
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Y= A+ 0+ + 0" =x,, (BS)

which is the maximum of all the pixels in the image x. This
is exactly the same as the mathematical morphology dilation
operation at the image center, where the structuring element
or template is the same size as the input image.

The proof that the nonlinear MDF can emulate the
morphological erosion or the min operation is very similar
to the proof above. Assuming that among the N pixels in the
input image X, x; (pixel 1) has the lowest (minimum) gray
value, and p' — — o and p=1/p/, the output feature in
Eq. (B2) can be written as

Y = [ (P + DhralxyV o+ byl YOI
(B6)

All of the ratio terms in Eq. (B6) (xy/x)), (x3/x1), ..., (xp/x;) are
greater than 1 since pixel x; is assumed to have the smallest
gray value; (xy/x;) > 1, etc. If p’ — — oo, then all of the ratio
terms in Eq. (B6) — O in the limit, and the output feature is
Ym = X1, which is the minimum of all the pixels in the image
x. This is exactly the same as the morphological erosion
operation at the image center, where the structuring element
or template is the same size as the input image.
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